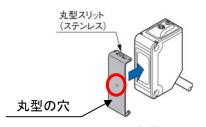
Panasonic

センサの用語解説

【スリット】


■ スリットとは?

丸型もしくは角型の穴が開いた板で、透過型光電センサの前面(検出面)に 取り付けて使用します。

板の材質は、主に金属(例:ステンレス)です。

一般的にスリットはオプション(別売)であるため、必要な場合のみ透過型 光電センサとは別に用意して使用します。

(注:スクリーンファイバのスリットは、ファイバに付属されています。)

<投・受光器両側スリット装着>

小型光電センサ CX-400シリーズ(透過型)

■ スリットを利用すると、どんなメリットがあるのか?

投光器から照射された光は、スリットの穴から照射され、穴以外の部分では遮光されます。 また、受光器側ではスリットの穴から受光し、穴以外の部分からは受光しなくなります。 このため、投光量と受光感度が抑えられます。

- → 他の光電センサに対する影響や他の光電センサからの影響(相互干渉)、外乱光による影響を低減することができます。
- → 投光器の光が強すぎて検出物体を透過してしまい、検出できないといった場合にはスリットにより投光量を絞る ことで透過しなくなるため、検出可能となります。

有効光芒が狭くなります。

(注):センサの用語解説「最小検出物体」も併せてご覧ください。

<スリット装着なし>

■ スリットを装着した場合の検出距離と最小検出物体

下表は、小型光電センサCX-400シリーズ(透過型)にスリットを装着した場合の検出距離と最小検出物体の一覧です。 スリットを装着することにより投光量が絞られるため、検出距離が短くなります。

最小検出物体は、投・受光器両側共スリットを装着した場合、基本的な考え方として次のようになります。

丸型スリットの場合:穴(円)の直径

角型スリットの場合:穴(長方形)のサイズ

品名	型式名		スリット	検出距離		最小検出物体		標準価格
	スリット	センサ	サイズ	片側装着時	両側装着時	片側装着時	両側装着時	〈税別〉
丸型スリット (透過型) 専用)	OS-CX-05	CX-411□	φ0.5mm	400mm	20mm	φ12mm	φ0.5mm	各1個 200円
		CX-412□		600mm	30mm			
		CX-413□		1,200mm	60mm			
	OS-CX-1	CX-411□	φ1mm	900mm	100mm	φ12mm	φ1mm	
		CX-412□		1.35m	150mm		φ1.5mm	
		CX-413□		2.7m	300mm			
	OS-CX-2	CX-411□	φ2mm	2m	400mm	φ12mm	φ2mm	
		CX-412□		3m	600mm		φ3mm	
		CX-413□		6m	1,200mm			
角型スリット (透過型) 専用)	OS-CX-05×6	CX-411□	0.5×6mm	2m	400mm	φ12mm	0.5×6mm	
		CX-412□		3m	600mm			
		CX-413□		6m	1,200mm			
	OS-CX-1×6	CX-411□	1×6mm	3m	1m	φ12mm	1×6mm	
		CX-412□		4.5m	1.5m			
		CX-413□		9m	3m			
	OS-CX-2×6	CX-411□	2×6mm	5m	2m	φ12mm	2×6mm	
		CX-412□		7.5m	3m			
		CX-413□		15m	6m			

■ なぜ、丸型スリットと角型スリットの2種類が用意されているのか?

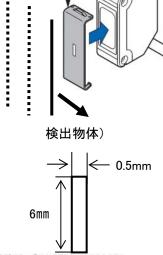
上記のようにスリットを装着すると投光量が絞られるため、検出距離が短くなります。

以前は丸型スリットのみであり、市場(マーケット)から、『検出距離を確保しつつ、微小物体を検出したい。』という要望が 出されてきました。この要望に応えたのが、角型スリットです。

例えば、φ 0.5mm丸型スリットと、0.5mm×6mmの角型スリットを**CX-411**口の投受光器両側に装着した場合で比較して みます。

検出距離 :20mm φ0.5mm丸型スリット(両側装着) 最小検出物体 : φ0.5mm

検出距離 : **400mm**


0.5mm×6mm角型スリット(両側装着) 最小検出物体 : 0.5×6mm

右図のような方向で検出物体が移動する場合、角型スリットの穴(0.5mm×6mm)の短い辺(0.5mm)を遮ることになり、最小検出物体は0.5mmとなります。 この値は、φ0.5mm丸型スリットの場合と同じです。

投光器の光はスリットの穴を通して照射されるため、検出距離は穴の"面積"に依存されます。

 ϕ 0.5mmの面積 = 0.25 × 0.25 × π (3.14) = 0.2mm 2 0.5mm × 6mmの面積 = 0.5 × 6 = 3mm 2

このように、角型スリットの場合穴の面積が丸型スリットより広くなるため、検出 距離が長くなり、かつ、最小検出物体のサイズは丸型スリットと同等です。

(ステンレス)

●技術に関するお問い合わせは コールセンタ 2回 0120-394-205 ※サービス時間/9:00~17:00(12:00~13:00、当社休業日を除く) ●FAX 回 0120-336-394

■発行 パナソニック デバイス SUNX株式会社 マーケティング統括部