AUTOMATION
CONTROLS

Search
Discontinued
Products



Relay Terminology

1. Coil (Also Referred to as Primary or Input)

1.Coil Designation

Single side stable type 1 coil latching type 2 coil latching type
Non-polarized Polarized 4-terminal 3-terminal

A black coil represents the energized state. For latching relays, schematic diagrams generally show the coil in its reset state. Therefore, the coil symbol is also shown for the reset coil in its reset state.

2.Nominal Coil Voltage (Rated Coil Voltage)

A single value (or narrow range) of source voltage intended by design to be applied to the coil or input.

3.Nominal Operating Current

The value of current flow in the coil when nominal voltage is impressed on the coil

4.Nominal Operating Power

The value of power used by the coil at nominal voltage. For DC coils expressed in watts; AC expressed as volt amperes. Nominal Power (W or VA) = Nominal Voltage × Nominal Current.

5.Coil Resistance

This is the DC resistance of the coil in DC type relays for the temperature conditions listed in the catalog. (Note that for certain types of relays, the DC resistance may be for temperatures other than the standard 20°C 68°F.)

6.Pick-Up Voltage (Pull-In Voltage or Must Operate Voltage)

As the voltage on an unoperated relay is increased, the value at or below which all contacts must function (transfer).

7.Drop-Out Voltage (Release or Must Release Voltage)

As the voltage on an operated relay is decreased, the value at or above which all contacts must revert to their unoperated position.

8.Maximum Applied Voltage

The maximum voltage that can be applied continuously to the coil without causing damage. Short duration spikes of a higher voltage may be tolerable, but this should not be assumed without first checking with the manufacturer.

Return to top

2. Contacts (Secondary or Output)

1.Contact Forms

Denotes the contact mechanism and number of contacts in the contact circuit.

2.Contact Symbols

Form A contacts
(normally open contacts)
Form B contacts
(normally closed contacts)
Form C contacts
(changeover contacts)

Form A contacts are also called N.O. contacts or make contacts.
Form B contacts are also called N.C. contacts or break contacts.
Form C contacts are also called changeover contacts or transfer contacts.

3.MBB Contacts

Abbreviation for make-before-break contacts. Contact mechanism where Form A contacts (normally open contacts) close before Form B contacts open (normally closed contacts).

4.Rated Switching Power

The design value in watts (DC) or volt amperes (AC) which can safely be switched by the contacts. This value is the product of switching voltage x switching current, and will be lower than the maximum voltage and maximum current product.

5.Maximum Switching Voltage

The maximum open circuit voltage which can safely be switched by the contacts. AC and DC voltage maximums will differ in most cases.

6.Maximum Switching Current

The maximum current which can safely be switched by the contacts. AC and DC current maximums may differ.

7.Maximum Switching Power

The upper limit of power which can be switched by the contacts. Care should be taken not to exceed this value.

8.Maximum Switching Capacity

This is listed in the data column for each type of relay as the maximum value of the contact capacity and is an interrelationship of the maximum switching power, maximum switching voltage, and maximum switching current. The switching current and switching voltage can be obtained from this graph. For example, if the switching voltage is fixed in a certain application, the maximum switching current can be obtained from the intersection between the voltage on the axis and the maximum switching power.

Maximum Switching Capacity
Example: Using TX relay at a switching voltage of 60V DC, the maximum switching current is 1A.
(*Maximum switching capacity is given for a resistive load. Be sure to carefully check the actual load before use.)

9.Minimum Switching Capability

This value is a guideline as to the lowest possible level at which it will be possible for a low level load to allow switching. The level of reliability of this value depends on switching frequency, ambient conditions, change in the desired contact resistance, and the absolute value. Please use a relay with AgPd contacts if your needs analog low level loads, control, or a contact resistance of 100 mΩ or less. We recommend that you verify with one of our sales offices regarding usage.

10.Contact Resistance

This value is the combined resistance of the resistance when the contacts are touching each other, the resistance of the terminals and contact spring. The contact resistance is measured using the voltage-drop method as shown below. The measuring currents are designated.

Test Currents

Rated Contact Current or Switching Current (A) Test Current(mA)
Less than 0.01 1
0.01 or more and less than 0.1 10
0.1 or more and less than 1 100
1 or more 1,000

The resistance can be measured with reasonable accuracy on a YHP 4328A milliohmmeter.
In general, for relays with a contact rating of 1A or more, measure using the voltage-drop method at 1A 6V DC.

11.Maximum Carrying Current

The maximum current which after closing or prior to opening, the contacts can safely pass without being subject to temperature rise in excess of their design limit, or the design limit of other temperature sensitive components in the relay (coil, springs, insulation, etc.). This value is usually in excess of the maximum switching current.

12.Capacitance

This value is measured between the terminals at 1kHz and 20°C 68°F.

Return to top

3. Electrical Performance

1. Insulation Resistance

The resistance value between all mutually isolated conducting sections of the relay, i.e. between coil and contacts, across open contacts and between coil or contacts to any core or frame at ground potential. This value is usually expressed as "initial insulation resistance" and may decrease with time, due to material degradation and the accumulation of contaminants.
- Between coil and contacts
- Between open contacts
- Between contact sets
- Between set coil and reset coil

2.Breakdown Voltage (Hi-Pot or Dielectric Strength)

The maximum voltage which can be tolerated by the relay without damage for a specified period of time, usually measured at the same points as insulation resistance. Usually the stated value is in VAC (RMS) for one minute duration.

3.Surge Breakdown Voltage

The ability of the device to withstand an abnormal externally produced power surge, as in a lightning strike, or other phenomenon. An impulse test waveform is usually specified, indicating rise time, peak value and fall time.

4.Operate Time (Set Time)

The elapsed time from the initial application of power to the coil, until the closure of the Form A (normally open) contacts. (With multiple pole devices the time until the last contact closes.) This time does not include any bounce time.

5.Release Time (Reset Time)

The elapsed time from the initial removal of coil power until the reclosure of the Form B (normally closed) contacts (last contact with multi-pole). This time does not include any bounce time.

6.Contact Bounce (Time)

Generally expressed in time (ms), this refers to the intermittent switching phenomenon of the contacts which occurs due to the collision between the movable metal parts or contacts, when the relay is operated or released.

Return to top

4. Mechanical Performance and Life

1.Shock Resistance

1) Functional

The shock which can be tolerated by the relay during service, without causing the closed contacts to open for more than the specified time or without causing the open contacts to close for more than the specified time. (usually 10 μs)

2) Destructive

The shock which can be withstood by the relay during shipping or installation without it suffering damage, and without causing a change in its operating characteristics. Usually expressed in "G"s. However, test was performed a total of 18 times, six times each in three-axis directions.

2.Vibration Resistance

1) Functional

The vibration which can be tolerated by the relay during service, without causing the closed contacts to open for more than the specified time or without causing the open contacts to close for more than the specified time. (usually 10 μs)

2) Destructive

The vibration which can be withstood by the relay during shipping, installation or use without it suffering damage, and without causing a change in its operating characteristics. Expressed as an acceleration in G's or displacement, and frequency range. However, test was performed a total of six hours, two hours each in three-axis directions.

3.Mechanical Life

The minimum number of times the relay can be operated under nominal conditions (coil voltage, temperature, humidity, etc.) with no load on the contacts.

4. Electrical Life

The minimum number of times the relay can be operated under nominal conditions with a specific load being switched by the contacts.

5. Maximum Switching Frequency

This refers to the maximum switching frequency which satisfies the mechanical life or electrical life under repeated operations by applying a pulse train at the rated voltage to the operating coil.

6.Life Curve

This is listed in the data column for each type of relay. The life (number of operations) can be estimated from the switching voltage and switching current. For example, for a DS relay operating at:
Switching voltage = 125V AC
Switching current = 0.6A
The life expectancy is 300,000
operations. However, this value is for a resistive load. Be sure to carefully check the actual load before use.

Life Curve

Return to top

5. High Frequency Characteristics

1.Isolation

High frequency signals leak through the stray capacitance across contacts even if the contacts are separated. This leak is called isolation. The symbol dB (decibel) is used to express the magnitude of the leak signal. This is expressed as the logarithm of the magnitude ratio of the signal generated by the leak with respect to the input signal. The larger the magnitude, the better the isolation.

2.Insertion Loss

At the high frequency region, signal disturbance occurs from self-induction, resistance, and dielectric loss as well as from reflection due to impedance mismatching in circuits. Loss due to any of these types of disturbances is called insertion loss. Therefore, this refers to the magnitude of loss of the input signal. The smaller the magnitude, the better the relay.

3.V.S.W.R. (Voltage Standing Wave Ratio)

High frequency resonance is generated from the interference between the input signal and reflected (wave) signal.
V.S.W.R. refers to the ratio of the maximum value to minimum value of the waveform. The V.S.W.R. is 1 when there is no reflected wave. It usually becomes greater than 1.

Notes:
1. Except where otherwise specified, the tests above are conducted under standard temperature and humidity (15°C to 35°C 59°F to 95°F, 25 to 75%).
2. The coil impressed voltage in the switching tests is a rectangular wave at the rated voltage.
3. The phase of the AC load operation is random.

Return to top


Catalog Download

RELATED INFORMATION Title Language File size Update
用語説明
各種リレー共通(パワー,安全,シグナル,高周波,制御盤,高容量,インターフェイスターミナル)
JP 729.8KB February 28, 2017
Definition of Relay Terminology
Power Relays(Over 2A),Safty Relays,Signal Relays(2A or less),Microwave Devices,Control Panel Relays,High-capacity DC Cutoff Relays and Interface Terminal.
EN 52.6KB February 28, 2014
继电器用语说明 CN-Simplified 550.7KB June 8, 2013

Return to top

CONTACT US
BY EMAIL
Please click your area to select country or region







BY PHONE

FAQ

Search Relays