

System Design Guide for Master

RTEX Technical Reference

21 May 2024

Motion Control Business Unit, Industrial Device Business Division Panasonic Industry Co., Ltd.

Revision History

Revision	Date	Change Description
1	2005/7/14	Initial Release
2	2012/1/31	 P1 Changed title from "A Guide for Firmware Development". P3 Added introduction. P7 Added SH7216 example. P19 Added SH7145 example. P25 Added TMS320F28335 example. Deleted SH7065 example. Deleted TMS320VC33-120 example. P58 Added overview of profile position I/F. P72 Added internal-timer using system. Minor edits.
3	2024/5/21	 P12-16 Added STM32H743 example. P17-38 Added TMS320F28388 example. Deleted SH7206, SH7145, and TMS320F28335 example. P48 Added the notes for "Write Buffer" and "Cache". P51 Added the reset signal. P71 Added the description in the checking timeout. P74, 88 Replaced to A6N period setting.

Introduction

To control transmit-timing, MNM1221 has two timer sources that are an external-timer and an internal-timer.

This document describes examples of the external-timer using system in chapter 1, and the internal-timer using system in chapter 2.

Timing Signal Pins of MNM1221

Note:

If not in RUNNING state, XTXTIM input is ignored.

Init-A and Init-B frame in RING-CONFIG state are automatically transmitted with internal timer of MNM1221.

Chapter 1

External-Timer System

Goal of Timing Control

The goal is to make the following timing:

In this case, previous RX data is read in the data exchange at the beginning of NC calculation.

* One frame contains data of all slave nodes, and its length depends on the number of connected nodes.

Example for SH7216 (Renesas)

Panasonic INDUSTRY

Your Committed Enabler 7

Timing Circuit

- MTU2-Ch1 generates TX timing signal. For 0.5 ms, TGRA_1 = 24999(0x61A7)@50MHz
- MTU2-Ch2 divides this signal, and generates the start signal for NC calculating interrupt. For 1 ms, TGRA_2 = 1
- IRQ3 by XINTRX of MNM1221 causes RX interrupt.

Source	Trigger	Priority	Period	Operation
TGIA_2	Compare match of MTU2 Ch2	-	1 ms	 Communication data exchange NC calculation
/IRQ3	RX complete	Higher than TGIA_2	0.5 ms	 Communication status check RX memory bank switch

Timing Chart

Panasonic INDUSTRY

Your Committed Enabler 10

Bus Connection

Example for STM32H743 (STMicro)

Timing Circuit

Source	Trigger	Priority	Period	Operation
TIM2 CC3I	Divided PWM Signal	-	1 ms	 Communication data exchange NC calculation
External Interrupt	RX complete (XINTRX)	Higher than CC3I	0.5 ms	- Communication status check - RX memory bank switch

Timing Chart

Bus Connection

Example for TMS320F28388 (TI)

Panasonic INDUSTRY

Your Committed Enabler 17

Timing Circuit

- ePWM1 generates TX timing signal. For 0.5 ms, TBPRD = 24999 (0x61A7) @TBCLK 50 MHz
- The interrupt generator of Event-Trigger divides this signal, and NC calculation interrupt starts.
- GPIO1 by XINTRX of MNM1221 causes RX interrupt.

Source	Trigger	Priority	Period	Operation
EPWM1INT	Divide the event of "TBCTR = TBPRD"	-	1 ms	 Communication data exchange NC calculation
XINT via GPIO1	RX complete	Higher than EPWM1INT	0.5 ms	 Communication status check RX memory bank switch

Timing Chart

Bus Connection

Note:TMS320F28388 has 32-bit unit address bus.

Unit of EMIF1_A[x]

12.2.6.1 Interfacing to Asynchronous Memory

Figure 12-8 shows the EMIF's external pins used in interfacing with an asynchronous device. In EM1CS[n], n = 2, 3, or 4.

Figure 12-8. EMIF Asynchronous Interface

Of special note is the connection between the EMIF and the external device's address bus. <u>The EMIF address</u> <u>pin EM1A[0] always provides the least-significant bit of a 32-bit word address</u>. Therefore, when interfacing to a 16-bit or 8-bit asynchronous device, the EM1BA[1] and EM1BA[0] pins provide the least-significant bits of the halfword or byte address, respectively. Figure 12-9 and Figure 12-10 show the mapping between the EMIF and the connected device's data and address pins for various programmed data bus widths. The data bus width can be configured in the asynchronous *n* configuration register (ASYNC_CS*n*_CR).

16-bit unit address

TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1 TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1 SPRSP14E – MAY 2019 – REVISED JUNE 2023

8.3.4 EMIF Chip Select Memory Map

The EMIF1 memory map is the same for both CPU subsystems. EMIF2 is available only on the CPU1 subsystem. The EMIF memory map is shown in the EMIF Chip Select Memory Map table.

EMIF CS	SIZE ⁽³⁾	START ADDRESS	END ADDRESS	CLA ACCESS	DMA ACCESS
EMIF1 CS0n - Data ⁽¹⁾	256M x 16	0x8000 0000	0x8FFF FFFF		Yes
EMIF1 CS0n - Program + Data ⁽¹⁾	1M x 16	0x0020 0000	0x002F FFFF		Yes
EMIF1 CS2n - Program + Data	2M x 16	0x0010 0000	0x002F FFFF		Yes
EMIF1 CS3n - Program + Data	512K x 16	0x0030 0000	0x0037 FFFF		Yes
EMIF1 CS4n - Program + Data	393K x 16	0x0038 0000	0x003D FFFF		Yes
EMIF2 CS0n - Data ⁽²⁾	32M x 16	0x9000 0000	0x91FF FFFF		
EMIF2 CS2n - Program + Data ⁽²⁾	4K x 16	0x0000 2000	0x0000 2FFF	Yes (Data only)	

Table 8-4, EMIF Chip Select Memory Map

- (1) Dual Map When EMIF1 CS0n is mapped at address 0x2x_xxxx, EMIF1 CS2n is only avaiable from 0x10_0000 to 0x1F_FFFF (1M x 16).
- (2) Only on the CPU1 subsystem.
- (3) Available memory size listed in this table is the maximum possible size assuming 32-bit memory. This may not apply to other memory sizes because of pin mux setting.

Modify "mnm1221_m.h"

Although the example code defines addresses with 8-bit unit, TMS320F28388 has 16-bit unit. Therefore, modify every address definition as follows:

mnm1221_m.h

Details of TMS320F28388 Configuration

Source: TMS320F2838x Technical Reference Manual SPRUII0E

TBCLK Setting

TBCTL register

Table 26-24. TBCTL Register Field Descriptions

Bit	Field	Туре	Reset	Description
12-10	CLKDIV	R/W	0h	Time Base Clock Pre-Scale Bits These bits select the time base clock pre-scale value (TBCLK = EPWMCLK/(HSPCLKDIV * CLKDIV): 000: /1 (default on reset) 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 Reset type: SYSRSn
9-7	HSPCLKDIV	R/W	1h	High Speed Time Base Clock Pre-Scale Bits These bits determine part of the time-base clock prescale value. TBCLK = EPWMCLK / (HSPCLKDIV x CLKDIV). This divisor emulates the HSPCLK in the TMS320x281x system as used on the Event Manager (EV) peripheral. 000: /1 001: /2 (default on reset) 010: /4 011: /6 100: /8 101: /10 110: /12 111: /14 Reset type: SYSRSn

PWM Period Setting

Up-Count Mode: In up-count mode, the time-base counter starts from zero and increments until the counter reaches the value in the period register (TBPRD). When the period value is reached, the time-base counter resets to zero and begins to increment once again.

Figure 26-6. Time-Base Frequency and Period

For Up Count and Down Count $T_{PWM} = (TBPRD + 1) \times T_{TBCLK}$ $F_{PWM} = 1/(T_{PWM})$

Setting for 0.5 ms:

TBCLK	TBPRD
50 MHz	24999 (0x61A7)

TBCLK = EPWMCLK / (HSPCLKDIV x CLKDIV)

Generating PWM Signal

- A. PWM period = (TBPRD + 1) × T_{TBCLK}
- B. Duty modulation for EPWMxA is set by CMPA, and is active high (that is, high time duty proportional to CMPA).
- C. Duty modulation for EPWMxB is set by CMPB and is active high (that is, high time duty proportional to CMPB).
- D. The "Do Nothing" actions (X) are shown for completeness, but are not shown on subsequent diagrams.
- E. Actions at zero and period, although appearing to occur concurrently, are actually separated by one TBCLK period. TBCTR wraps from period to 0000.

Figure 26-27. Up, Single Edge Asymmetric Waveform, with Independent Modulation on EPWMxA and EPWMxB—Active High

Generating Interrupt Start Signal

ETSEL register

Table 26-82. ETSEL Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3	INTEN	R/W	0h	Enable ePWM Interrupt (EPWMx_INT) Generation 0: Disable EPWMx_INT generation 1: Enable EPWMx_INT generation Reset type: SYSRSn
2-0	INTSEL	R/W	0h	ePWM Interrupt (EPWMx_INT) Selection Options 000: Reserved 001: Enable event time-base counter equal to zero. (TBCTR = 0x00) 010: Enable event time-base counter equal to period (TBCTR = TBPRD) 011: Enable event time-base counter equal to zero or period (TBCTR = 0x00 or TBCTR = TBPRD). This mode is useful in up-down count mode. 100: Enable event time-base counter equal to CMPA when the timer is incrementing or CMPC when the timer is incrementing 101: Enable event time-base counter equal to CMPA when the timer is decrementing or CMPC when the timer is decrementing 110: Enable event time-base counter equal to CMPB when the timer is incrementing or CMPC when the timer is decrementing 111: Enable event: time-base counter equal to CMPB when the timer is incrementing or CMPD when the timer is incrementing 111: Enable event: time-base counter equal to CMPB when the timer is decrementing or CMPD when the timer is incrementing 111: Enable event: time-base counter equal to CMPB when the timer is decrementing or CMPD when the timer is decrementing 111: Enable event: time-base counter equal to CMPB when the timer is decrementing or CMPD when the timer is decrementing 111: Enable event: time-base counter equal to CMPB when the timer is decrementing or CMPD when the timer is decrementing (*) Event selected is determined by INTSELCMP bit. Reset type: SYSRSn

ETPS register

Table 26-83. ETPS Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
4	INTPSSEL	R/W	0h	EPWMxINTn Pre-Scale Selection Bits 0: Selects ETPS [INTCNT, and INTPRD] registers to determine frequency of events (interrupt once every 0-3 events). 1: Selects ETINTPS [INTCNT2, and INTPRD2] registers to determine frequency of events (interrupt once every 0-15 events). Reset type: SYSRSn
1-0 When com change to	INTPRD mand update = communic 1.	R/W	0h	ePWM Interrupt (EPWMx_INT) Period Select These bits determine how many selected ETSEL[INTSEL] events need to occur before an interrupt is generated. To be generated, the interrupt must be enabled (ETSEL[INT] = 1). If the interrupt status flag is set from a previous interrupt (ETFLG[INT] = 1) then no interrupt will be generated until the flag is cleared via the ETCLR[INT] bit. This allows for one interrupt to be pending while another is still being serviced. Once the interrupt is generated, the ETPS[INTCNT] bits will automatically be cleared. Writing a INTPRD value that is the same as the current counter value will trigger an interrupt if it is enabled and the status flag is clear. Writing a INTPRD value that is less than the current counter value will result in an undefined state. If a counter event occurs at the same instant as a new zero or non-zero INTPRD value is written, the counter is incremented. 00: Disable the interrupt event counter. No interrupt will be generated and ETFRC[INT] is ignored. 01: Generate an interrupt on the first event INTCNT = 01 (first event) 10: Generate interrupt on ETPS[INTCNT] = 1,0 (second event) 11: Generate interrupt on ETPS[INTCNT] = 1,1 (third event) Reset type: SYSRSn

ETCLR register

Table 26-85. ETCLR Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-4	RESERVED	R-0	0h	Reserved
3	SOCB	R-0/W1S	Oh	ePWM ADC Start-of-Conversion A (EPWMxSOCB) Flag Clear Bit 0: Writing a 0 has no effect. Always reads back a 0 1: Clears the ETFLG[SOCB] flag bit Reset type: SYSRSn
2	SOCA	R-0/W1S	Oh	ePWM ADC Start-of-Conversion A (EPWMxSOCA) Flag Clear Bit 0: Writing a 0 has no effect. Always reads back a 0 1: Clears the ETFLG[SOCA] flag bit Reset type: SYSRSn
1	RESERVED	R-0	0h	Reserved
0	INT	R-0/W1S	Oh	ePWM Interrupt (EPWMx_INT) Flag Clear Bit 0: Writing a 0 has no effect. Always reads back a 0 1: Clears the ETFLG[INT] flag bit and enable further interrupts pulses to be generated Reset type: SYSRSn

Set to 1 within NC interrupt for the next start.

PCLKCR1 register

Table 3-74	PCLKCR1	Register Field	Descriptions
------------	---------	-----------------------	--------------

Bit	Field	Туре	Reset	Description
31-16	RESERVED	R-0	0h	Reserved
15-2	RESERVED	R-0	0h	Reserved
1	EMIF2	R/W	Oh	EMIF2 Clock Enable bit: 0: Module clock is gated-off 1: Module clock is turned-on Notes: [1] These bits are not used (R/W) in CPU2.PCLKCR1 register. EMIF1 & EMIF2 clock enabled are controlled only from CPU1.PCLKCR1 register. Reset type: SYSRSn
0	EMIF1	R/W	0h	EMIF1 Clock Enable bit: 0: Module clock is gated-off 1: Module clock is turned-on Notes: [1] These bits are not used (R/W) in CPU2.PCLKCR1 register. EMIF1 & EMIF2 clock enabled are controlled only from CPU1.PCLKCR1 register. Reset type: SYSRSn

PERCLKDIVSEL register

Table 3-52. PERCLKDIVSEL Register Field Descriptions

Bit	Field	Туре	Reset	Description
31-16	RESERVED	R-0	0h	Reserved
15-7	RESERVED	R-0	0h	Reserved
6	EMIF2CLKDIV	R/W	1h	EMIF2 Clock Divide Select: This bit selects whether the EMIF2 module run with a /1 or /2 clock. 0: /1 of CPU1.SYSCLK is selected 1: /2 of CPU1.SYSCLK is selected Reset type: CPU1.SYSRSn
5	RESERVED	R-0	0h	Reserved
4	EMIF1CLKDIV	R/W	1h	EMIF1 Clock Divide Select: This bit selects whether the EMIF1 module run with a /1 or /2 clock. For single core device 0: /1 of CPU1.SYSCLK is selected 1: /2 of CPU1.SYSCLK is selected For Dual core device 0: /1 of PLLSYSCLK is selected 1: /2 of PLLSYSCLK is selected Reset type: CPU1.SYSRSn
3-2	RESERVED	R/W	0h	Reserved
1-0	EPWMCLKDIV	R/W	1h	EPWM Clock Divide Select: This bit selects whether the EPWM modules run with a /1 or /2 clock. This divider sits in front of the PLLSYSCLK x0 = /1 of PLLSYSCLK x1 = /2 of PLLSYSLCK (default on reset) Note: Refer to the EPWM User Guide for maximum EPWM Frequency Reset type: CPU1.SYSRSn

ASYNC_CS2_CR register

Table 12-40. ASYNC_CS2_CR Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	SS Set to 0. (Normal Mode)	R/W	0h	Select Strobe mode. Set to 1 if chip selects need to have write or read strobe timing. Reset type: SYSRSn
30	EW Set to 1. (Enable WAIT)	R/W	0h	Extend Wait mode. Set to 1 if extended asynchronous cycles are required based on EMxWAIT. Reset type: SYSRSn
29-26	W_SETUP Set to 1. (20 ns)	R/W	Fh	Write Strobe Setup cycles. Number of EMxCLK cycles from EMxAy, EMxBAy, EMxDQMy, and EMxCS2n being set to EMxWEn asserted, minus one cycle. The reset value is 16 cycles. Reset type: SYSRSn
25-20	W_STROBE	R/W	3Fh	Write Strobe Duration cycles. Number of EMxCLK cycles for which
	Set to 4.← X (50 ns) M	WAIT output o NM1221 wide	of ens it.	EMxWEn is held active, minus one cycle. The reset value is 64 cycles. This field cannot be zero when ew = 1. Reset type: SYSRSn
19-17	W_HOLD Set to 2. (30 ns)	R/W	7h	Write Strobe Hold cycles. Number of EMxCLK cycles for which EMxAy, EMxBAy, EMxDQMy, and EMxCS2n are held after EMxWEn has been deasserted, minus one cycle. The reset value is 8 cycles. Reset type: SYSRSn
ASYNC_CS2_CR register

Table 12-40. ASYNC_CS2_CR Register Field Descriptions

Bit	Field		Туре	Reset	Description
16-13	R_SETUP	Set to 1. (20 ns)	R/W	Fh	Read Strobe Setup cycles. Number of EMxCLK cycles from EMxAy, EMxBAy, EMxDQMy, and EMxCS2n being set to EMxOEn asserted, minus one cycle. The reset value is 16 cycles. Reset type: SYSRSn
12-7	R_STROBE	Set to 4. ← (50 ns)	R/W XWAIT out MNM1221	3Fh put of widens it.	Read Strobe Duration cycles. Number of EMxCLK cycles for which EMxOEn is held active, minus one cycle. The reset value is 64 cycles. This field cannot be zero when ew = 1. Reset type: SYSRSn
6-4	R_HOLD	Set to 2. (30 ns)	R/W	7h	Read Strobe Hold cycles. Number of EMxCLK cycles for which EMxAy, EMxBAy, EMxDQMy, and EMxCS2n are held after EMxOEn has been deasserted, minus one cycle. The reset value is 8 cycles. Reset type: SYSRSn
3-2	TA S (Set to 0. (10 ns)	R/W	3h	Turn Around cycles. Number of EMxCLK cycles between the end of one asynchronous memory access and the start of another asynchronous memory access, minus one cycle. This delay is not incurred between a read followed by a read, or a write followed by a write to the same chip select. The reset value is 4 cycles. Reset type: SYSRSn
1-0	ASIZE		R/W	1h	Asynchronous Memory Size. Defines the width of the asynchronous device's data bus : 00: 8 Bit data bus. 01: 16 Bit data bus. 10: 32 Bit data bus. 11: Reserved. Reset type: SYSRSn

ASYNC_WCCR register

Table 12-37. ASYNC_WCCR Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	RESERVED	R/W	1h	Reserved
30	RESERVED	R/W	1h	Reserved
29	RESERVED	R/W	1h	Reserved
28	WP0	R/W	1h	Defines the polarity of the EMxWAIT port.: 0: Wait if EMxWAIT port is low. 1: Wait if EMxWAIT port is high. Reset type: SYSRSn
27-24	RESERVED	R	0h	Reserved
23-22	RESERVED	R/W	0h	Reserved
21-20	RESERVED	R/W	0h	Reserved
19-18	RESERVED	R/W	0h	Reserved
17-16	RESERVED	R/W	0h	Reserved
15-8	RESERVED	R	0h	Reserved
7-0	MAX_EXT_WAIT	R/W	80h	The EMIF will wait for (max_ext_wait + 1) * 16 clock cycles before an extended asynchronous cycle is terminated. Reset type: SYSRSn

Leave the default.

Example for CPU without Internal Timer

CPU

Timing Chart 2

Location of Example Codes

Location of Example Codes

An Example of NC Calculation

Timing Chart at Start-up

Panasonic INDUSTRY

Your Committed Enabler 46

Notes of Using Example Codes

CPU with "Write Buffer" or "Cache"

- When using a CPU with "Write Buffer", it causes unstable timing for writing data into MNM1221, and the example codes cannot perform the operation normally. Therefore, the measures must be taken according to the CPU manual.
- "Cache" must be disabled for the address area where MNM1221 is placed.

The following shows the structure of one element of tx_buf[] or rx_buf[] array **when 32-bit bus access**.

		Bit 31	Bit 24	Bit 23		Bit 16	Bit 15		Bit 8	Bit 7		Bit
	data[0]	byte3	24	20	byte2	10		byte1	0	1	byte0	
One element	data[1]	byte7			byte6			byte5			byte4	
of tx_buf[] < or rx_buf[]	data[2]	byteB			byteA			byte9			byte8	
	data[3]	byteF			byteE			byteD			byteC	

"byte0 to F" is corresponding to contents of a data block consisting of 16 bytes.

The following shows the structure of one element of tx_buf[] or rx_buf[] array **when 16-bit bus access**.

		Bit 15	Bit 8	Bit 7	Bit 0
	data[0]	byte1		byte0	
	data[1]	byte3		byte2	
	data[2]	byte5		byte4	
One element	data[3]	byte7		byte6	
or rx_buf[]	data[4]	byte9		byte8	
	data[5]	byteB		byteA	
	data[6]	byteD		byteC	
	data[7]	byteF		byteE	

"byte0 to F" is corresponding to contents of a data block consisting of 16 bytes.

Status LEDs for Communication

"COM" LED Operation

"COM" LED which has red and green lights should be operated as follows:

Normally

Return value of ctrl_mnm1221_m()	"COM" LED operation
PH_INIT	Disappearance
PH_WAITING	
PH_PREPARE	Flashing Green (0.5 s ON, 0.5 s OFF)
PH_START	
PH_RUNNING	Solid Green

Error detected	
----------------	--

Contents of error	"COM" LED operation
Timeout in RUNNING state	Flashing Red (0.5 s ON, 0.5 s OFF)
Mismatch of slave information (e.g. duplicate MAC-ID)	Solid Red

Notes:

- Solid Red means that a system reset is necessary to release the error.
- Either green or red must be lighted.

Overview of Cyclic Position I/F

Data Block

Command (TX)							mally, se (Positior	t 0x2(1).	0	Response (RX)								
	bit7	bit6	bit5	bit4	bit3	bit2	bj	bit0			bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
byte0	0 (CMD)	Update	Counter			MAC-ID				byte0	1 (RSP)	Update Counter Actual MAC-ID						
bytel	0		_	Co	mmand Co	ode				byte1	CMD Error		Command Code Echo					
byte2	Servo On	0	0	Gain SW	TL SW	HM Ctrl	0	0		byte2	Servo Act.	Servo Ready	Alarm	Warn.	TL	HM Comp.	In Prog.	In Pos.
byte3	Hard Stop	SMT Stop	Pause	0	SL SW	0	EX- OUT2	EX- OUT1		byte3	SI- MO5	SI- MO4	EXT 3	EXT 2	SI- MO1	Home	РОТ	NOT
byte4			-				Low	byte		byte4	Low byte							
byte5				Comman	1 Position		Low Mid	ldle byte		byte5		Actual Position Low Middle byte						ile byte
byte6				Command			High Mic	ldle byte		byte6		High Middle byt					ile byte	
byte7							High	byte		byte7		High byte					vyte	
byte8							Low	byte		byte8							Low b	oyte
byte9				Common	d Data 2		Low Mid	ldle byte		byte9		Low Middle b					lle byte	
byteA				Comman	lu Data 2		High Mic	ldle byte		byteA				Respons	C Data 2		High Mide	ile byte
byteB							High	byte		byteB							High b	vyte
byteC							Low	byte		byteC							Low b	oyte
byteD				Common	d Data 2		Low Mid	ldle byte		byteD				Pasmana	a Data 2		Low Midd	ile byte
byteE				Comman	u Data 5		High Mic	ldle byte		byteE]			Respons	e Data 3		High Mide	ile byte
byteF							High	byte		byteF							High b	yte

Note: In cyclic position I/F, at least red portions must be supported.

Command at Start-up

Panasonic INDUSTRY

Your Committed Enabler 55

Cyclic Position I/F

Overview of Profile Position I/F

Command

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
Byte0	C/R (0)	Update Counter MAC-ID (0 to 31)												
Byte1	TMG CNT		17h (Command Code)											
Byte2	Servo On	0	0	Gain SW	TL SW	Homing Ctrl	0	0						
Byte3	Hard Stop	Smooth Stop	Pause	0	0 SL SW		EX- OUT2	EX- OUT1						
Byte4														
Byte5		Torrect Desition												
Byte6				Target i	0311011									
Byte7														
Byte8				Туре	Code 🤜	M	ode,							
Byte9				()	Inc	Abs							
Byte10				()									
Byte11				Monit	or Sel									
Byte12														
Byte13				Target	Speed									
Byte14				iaiyet	opeeu									
Byte15														

Response

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Byte0	C/R (1)	Update Counter Echo Actual MAC-ID (0 to 31)										
Byte1	CMD Error		17h (Command Code Echo)									
Byte2	Servo Active	Servo Ready	Alarm	Warning	Torque Limited	Homing Complete	In Progress	In Position				
Byte3	SI-MON5 /E-STOP	SI-MON4 /EX-SON	SI-MON3 /EXT3	SI-MON2 /EXT2	SI-MON1 /EXT1	Home	POT /NOT	NOT /POT				
Byte4												
Byte5				Actual I	Position							
Byte6				Actual I	USITION							
Byte7												
Byte8				Туре Со	de Echo							
Byte9	ERR	WNG	0	BUSY	PSL /NSL	NSL /PSL	NEAR	Latch Compl				
Byte10				()							
Byte11				Monitor	Sel Echo							
Byte12												
Byte13				Monite	or Data							
Byte14				wonte	μυαία							
Byte15												

Start

When "In Progress" = 0, a change of Command Code 10h to 17h makes servo start motion. Acceleration and deceleration are preset with parameter. Abs/Inc is set with Type Code at start.

Changing T Speed in Motion

When "In Progress" = 1, target speed can be changed. Even if changing target speed to 0 or Pause to 1, "In Progress" keeps 1 during stop.

Modifying the Example Code

Definition of Variables

Slave Information Table

Structure of Slave Information data:

Style of Initializing Variables

ctrl_mnm1221_m() in mnm1221_m.c

To set variable "phase" to 0 after reset, select this value (0 or 1) according to your initializing process.

/* Select either of the followings according to your initializing process. */
#if 0

```
static short phase = 0;
```

#else

```
static short phase; /* need RAM clear after reset-release separately */
#endif
```

Checking Slave Information

ctrl_mnm1221_m() in mnm1221_m.c

Starting Cyclic Transmission

In Running State

Checking Timeout

is_timeout() in mnm1221_m.c

Chapter 2

Internal-Timer System
The Point of System

- Set both "Command Update Period" and "Communication Period" to the same time.
- Start NC calculation interrupt with MNM1221 XSYNC.
- If not using RX interrupt, detect timeout error by software using "Update Counter Echo".

Period Setting of A6N Drive

Set both command update period and communication period to the same. Default setting must be changed.

	Update	Com. Period [ms]	Paramo	eter Setti	ng Value		
	Period [ms]		Pr7.20	Pr7.21	Pr7.91	Remark	
	4.000	2.000	-1	2	2000000		
→	2.000	2.000	-1	1	2000000		
	2.000	1.000	-1	2	1000000		
→	1.000	1.000	-1	1	1000000	Pr7.20 = 6, Pr7.21 = 1 also allowed.	
	1.000	0.500	-1	2	500000	Pr7.20 = 3, Pr7.21 = 2 also allowed.	
→	0.500	0.500	-1	1	500000	Pr7.20 = 3, Pr7.21 = 1 also allowed.	
	0.500	0.250	-1	2	250000		
→	0.250	0.250	-1	1	250000		
	0.250	0.125	-1	2	125000		
→	0.125	0.125	-1	1	125000		
	0.125	0.0625	-1	2	62500		

Goal of Timing Control

The goal is to make the following timing:

* One frame contains data of all slave nodes, and its length depends on the number of connected nodes.

Example for an Embedded CPU

If not using RX interrupt, a timeout should be detected with the echo back of Update Counter in the data block.

Recommended Timing

Tf: approx. 11 us@1-axis to 300 us@32-axis

NOT Recommended Timing

At XSYNC falling edge, a frame has already been in transmitting, and the memory-bank switching after writing TX-data is deferred. Therefore, the transmit timing is delayed for one communication period.

Timeout Detection Example for Not Using RX Interrupt

	bit7	bin	bit5	bit4	bit3	bit2	bit1	bit0		
byte0	0 (CMD)	Update	Counter	MAC-ID						
byte1	0	Command Code								
byte2	Servo On	0	0	Gain SW	TL SW	HM Ctrl	0	0		
byte3	Hard Stop	SMT Stop	Pause	0	SL SW	0	EX- OUT2	EX- OUT1		
byte4		Low byte								
byte5		Low Middle byte								
byte6		Command Position High Middle byte								
byte7		High byte								
byte8		Low byte								
byte9	Low Middle byte									
byteA		Command Data 2 High Middle byte								
byteB	High byte									
byteC	Low byte									
byteD	Low Middle byte									
byteE		High Middle byte								
byteF	High byte									

Command (TX)

Response (RX)

	bit7	b. 6	bit5	bit4	bit3	bit2	bit1	bit0	
byte0	1 (RSP)	Update Ec	Counter ho	Actual MAC-ID					
byte1	CMD Error	Command Code Echo							
byte2	Servo Act.	Servo Ready	Alarm	Warn.	TL	HM Comp.	In Prog.	In Pos.	
byte3	SI- MO5	SI- MO4	EXT 3	EXT 2	SI- MO1	Home	РОТ	NOT	
byte4		L ovy hyte							
byte5	Low Oyle Low Middle byte								
byte6		Actual Position High Middle byte							
byte7		High byte							
byte8	I ow byte								
byte9	Low Middle byte								
byteA		Response Data 2 High Middle byte							
byteB	High byte								
byteC	Low byte								
byteD	Response Data 3 High Middle byte							lle byte	
byteE								lle byte	
byteF	High byte						yte		

Timeout Detection

If "Update Counter Echo" is not changed continuously for a certain time, timeout should be considered.

If timeout is detected, servo-off must be commanded to all axes for safety.

Modifying the Example Code

See also corresponding clause in chapter 1. There are some abbreviations to prevent duplicate descriptions.

Timing at Start-up

Panasonic INDUSTRY

Your Committed Enabler 84

Task	Trigger	Priority	Period	Operation		
Main loop	-	-	-	 Controlling MNM1221 (including com-status check) "COM" LED control 		
XSYNC Interrupt	TX start	-	e.g. 0.5 ms	 Communication data exchange NC calculation Timeout detection 		
XINTRX Interrupt	RX completed	Lower than XSYNC	Same as XSYNC	- Watchdog timer clear		

Notes:

- The interrupts must be disabled until RUNNING state.

- If not using XINTRX interrupt, a timeout detection with Update Counter Echo is necessary.

Location of Example Codes

Panasonic INDUSTRY

Your Committed Enabler 86

An Example of Location

MNM1221 initializing

Reading State

Starting Cyclic Transmission

In Running State

Data Exchanging

Data Exchanging (Cont.)

XINTRX Interrupt

XINTRX Interrupt (Cont.)

Appendix

System Consideration for 2 times communication one NC calculation

This system is not recommended because of longer delay in TX data flow.

Timing Chart

At XSYNC falling edge, a frame has already been in transmitting, and the memory-bank switching after writing TX-data is deferred. Therefore, the transmit timing is delayed for one communication period.

BAD Example

