

System Design Guide for Slave

Motor Business Unit Appliances Company

Revision	Date	Change Description
1	2010/3/3	Initial Release
2	2012/2/15	 P1 Changed title from "A Guide to Firmware Development for Slave". P3 Added introduction. P5 Clarified the block diagram. Deleted MNM1221 block diagram. P7 Added XSYNC output timing. P9 Changed from SH7065F to SH7216 example. P10 Deleted XINTRX signal connection. P14 Added bus connection. P35 Added occupied blocks. Minor edits.

Introduction

This document is to describe an example of system design for the generic slave.

	Maatar	Slave		
	waster	Generic (Note)	IN / OUT	
CPU	Need	Need	No Need	
Data Pina	Data Bus	Data Bus	Input or Output Pins	
Data Fins	(32 or 16bit)	(16 or 8bit)	(32)	
Address Pins	ss Pins Address Bus Address Bus		MAC-ID Setting	
Pin91	XWAIT	XWAIT	XLED	
Trigger of	Internal Timer	Bosoiving Fromo	Boooiving Framo	
Transmitting	or XTXTIM input	Receiving Frame	Receiving Frame	
VEYNC		After All Slaves	After All Slaves	
ASTNC Output Timing	Transmitting	Receiving	Receiving	
Output Timing		(RUNNING State Only)	(RUNNING State Only)	
Conditions	No Doppiving before	No Receiving for	No Receiving for	
of Timeout	the Next Transmitting	a Certain Time	a Certain Time	
Detection		Set with Register	(20.9ms Fixed)	

Modes of ASIC MNM1221:

Note: "Generic" mode can be used for various applications also including in/out device.

System Structure

Block Diagram for RTEX Circuit

2012/2/15 Rev. 2

Panasonic Corporation

Panasonic

ideas for life

Timing Signals of MNM1221

Panasonic

ideas for life

XSYNC Output Timing

At the same time, XSYNCs of all slaves are outputted.

Consideration for Com. Error

In communication error, there is a case where the frame is stopped as well as CRC error. In this case, since the frame cannot be received, XSYNC and XINTRX pulse are not output.

Example for SH7216 (Renesas)

Timing Signal Connection

- Connect XSYNC to a capture input of a timer in the CPU.
- At the falling edge, the timer is cleared and the interrupt occurs.

Timing Chart

2012/2/15 Rev. 2

Panasonic Corporation

Page 11

During normal receiving, the input capture interrupt is used. If missing, the compare match interrupt works.

Signal	Interrupt	Period	Trigger	Interrupt Enabling
TGIA_x	MTU2 Input Capture	e.g. 0.5ms	Normal receiving	Always enable.
TGIB_x	MTU2 Compare Match	e.g. 0.5ms	Frame missing	At the first XSYNC, enable in the capture INT. At timeout detected, disable.

Notes:

- If the frame missing, the previous data is used for the control. This way is the same as CRC error detected. If the data is command position, previous difference of position is used with assuming velocity is constant.

- The input capture is used for clearing the timer at interrupt occurrence, and TGRA_x capture value is not used.

- Because XSYNC is output in only RUNNING state, in the time from reset-released to the RUNNING state the process should be done by main loop.

Setting Compare Value

To prevent both capture and compare-mach INT in normal receiving, the compare-mach INT timing must be delayed a little. Therefore set as follows:

	Setting Value	
C1	Tc + Tm	
C2	2Tc + Tm	
C3	3Tc + Tm	Tc: Communication Period Tm: Timing Margin
C4	4Tc + Tm	(Set the larger value than the jitter of XSYNC.)

According to receiving situation, set TGRB_x to the following compare value.

In capture INT	In compare-match INT
Set C1 (Initialize)	Each time interrupt, increment the compare value such as from C1 to C2.

Bus Connection

Timing Chart at Start-up

Timing at Start-up in Master

Panasonic ideas for life

2012/2/15 Rev. 2

Panasonic Corporation

Timing at Start-up in Slave

2012/2/15 Rev. 2

State-Transition at Start-up

Panasonic

ideas for life

Example Code

Contents of Example Code

The example code has basic functions for slave. The received data is moved into RX buffer in RAM, and TX buffer data is transmitted. An application program using this TX/RX buffer is assumed.

Files:

Name	Description	
mnm1221_s.h	Header File	
mnm1221_s.c	Source File	

Functions:	Name	Placing	Description
	init_mnm1221_s()	After Releasing Reset	Initializing
	get_state_mnm1221_s()	Main Loop	Reading MNM1221 state
	int_sync_mnm1221_s()	Interrupt by XSYNC	Com. Data Exchange
	timeout_mnm1221_s()	At Timeout Detected	Operation at Timeout

Variables:

es:	Name	Placing	Description
	my_rx_buf[]	CPU internal RAM	RX Buffer
	my_tx_buf[]	CPU internal RAM	TX Buffer

Programming by Yourself

The followings are not included in the example code.

	Description	Remark
Application	Depend on your device.	Including detection of command error.
Reading MAC-ID	Reading rotary SW at power-on	Converting BCD to BIN. Error detection for out of setting range.
"COM" LED Operation	According to MNM1221 state and error, control LED.	2 Colors LED (Green / Red)
Timeout Detection In RUNNING state, continuously not received.		e.g. Cable breaking down
Continuous CRC Error Detection	In RUNNING state, continuously CRC error detected.	If necessary, added for safety. In motion control, mandatory.

Note:

When the larger value is set to timeout detection or continuous CRC error detection, noise immunity is improved. However, there is a trade-off that the detection time becomes longer and it might cause problem for safety. After careful consideration, set suitable value for application. If error detected, it is necessary to control for safe side such as motion stop.

Location of Example Code

Flow Chart

Initializing

Name	Description
init_mnm1221_s()	Initializing after Reset

Main Loop

Name	Description
get_state_mnm1221_s()	Reading State

SYNC Interrupt

Operation at Timeout Detected

TX and RX Buffer Structure

Com. Buffer Structure (16bit)

The following figure shows my_rx_buf[] when 16bit access. Also my_tx_buf[] .

	Bit 15	Bit 8	Bit 7	Bit 0
my_rx_buf[0]	byte1		byte0	
my_rx_buf[1]	byte3		byte2	
my_rx_buf[2]	byte5		byte4	
my_rx_buf[3]	byte7		byte6	
my_rx_buf[4]	byte9		byte8	
my_rx_buf[5]	byte1 ²		byte10	
my_rx_buf[6]	byte13	3	byte12	
my_rx_buf[7]	byte18	5	byte14	

"byte0 to 15" means the contents of the one data block consisting of 16 bytes.

Com. Buffer Structure (8bit)

The following figure shows my_rx_buf[] when 8bit access. Also my_tx_buf[] .

	Bit Bit		Bit	Bit
	7 0		7	0
my_rx_buf[0]	byte0	my_rx_buf[8]	byte8	
my_rx_buf[1]	byte1	my_rx_buf[9]	byte9	
my_rx_buf[2]	byte2	my_rx_buf[10]	byte10	
my_rx_buf[3]	byte3	my_rx_buf[11]	byte11	
my_rx_buf[4]	byte4	my_rx_buf[12]	byte12	
my_rx_buf[5]	byte5	my_rx_buf[13]	byte13	
my_rx_buf[6]	byte6	my_rx_buf[14]	byte14	
my_rx_buf[7]	byte7	my_rx_buf[15]	byte15	

"byte0 to 15" means the contents of the one data block consisting of 16bytes.

LED Operation

"COM" LED Operation

"COM" LED

Control the "COM" LED as follows:

Normally	Return Value of get_state_mnm1221_s()		
	0x0008 (INITIAL)		
	0x0004 (CONFIG-A)		

0x0008 (INITIAL)	OFF	
0x0004 (CONFIG-A)	Blinking Green	
0x0002 (CONFIG-B)	(0.5s ON, 0.5s OFF)	
0x0001 (RUNNING)	Solid Green	

Error

Cause of Error	"COM" LED	
Timeout		
Continuous CRC Error	Blinking Red	
Cyclic-data Not Receivable (e.g. MAC-ID Unmatched)	(0.5s ON, 0.5s OFF)	
Out of MAC-ID setting range	Solid Red	

Notes:

- Latch an error, and hold the error state until clearing operation even if the cause disappears.

- The Solid Red shows that system reset is needed for clearing.
- The detection time of "Timeout" and "Continuous CRC Error" is typically four communication cycle, and adjust it with careful consideration for safety and noise immunity etc...

Modifying the Example Code

Bus Access Definition

#define N_MY_DATA (SIZE_OF_BLOCK * N_MY_BLOCK)

Putting Application


```
mnm1221_s.c
Int_sync_mnm1221_s()
```

if (!done_lst_cycle) {
 done_lst_cycle = 1;

```
order = MNM1221 S BLK ORDER & 0x001f;
    p_my_rx_bgn = P_MNM1221_RX_MEM_BGN + (SIZE_OF_BLOCK * order);
    my_dcrc_mask = MSK_DATA_CRCE << order;</pre>
/* CRC error checking */
crc_err = chk_crc_err(my_dcrc_mask);
/* get command from MNM1221 to my_rx_buf[] */
if (!crc_err) {
    get_cmd_mnm1221();
/*--- Here, put your application using my_rx_buf[] and my_tx_buf[] -----*/
/* This function is just for example */
set resp example(my mac id, crc err);
                                     ----- end of your application ---*/
/* set response from my_tx_buf[] to MNM1221 */
set_rsp_mnm1221();
MNM1221_S_TXMEM_SW = 1;
                                            /* switching TX bank */
```

```
return crc_err;
```

Replace this test function with your application.

The time of the calculation

must be shorter than communication period.

LED Operation at Timeout

mnm1221_s.c

Attention for Cyclic Position I/F

Motion at Communication Error

In cyclic position interface device, if the command is held the previous value, that is the same as zero velocity command and causes unstable motion. Therefore, at communication error, the estimated command position on the assumption of constant velocity must be used.

Note: The above description is for momentary communication error. If the error continues over the specific value, the motion must be stopped for safety.

Panasonic Corporation

When data update period is longer than communication period (e.g. update: 1ms and com.: 0.5ms), recognize the update timing with the case "continuously twice OK received and update counter changed".

Previous Receiving	Current Receiving	Update Counter Change	Update Timing?
ОК	ОК	Change	Yes
ОК	ОК	Not change	No
Either or Both Error		-	Unknown

Notes:

- "OK" means nothing of both CRC error and frame missing.

- Update Counter is placed at byte0 bit5, 6 in command data block.